

Robert Percival Lallemand Phil Lowry Simply Hops

SimplyHops

BARTH-HAAS

Modern Beer Styles

• Emphasis on hops

Draft Mag, *The Secret to hoppiness*, May 2013

Hop Composition

POLYPHENOLS

RESINS

ESSENTIAL OILS

Hop Composition

- ESSENTIAL OILS
 - Hydrocarbon fraction (50-80%)
 - Myrcene, Caryophellene, Farnesene, Humulene, ...
 - Oxygenated fraction (20-50%)
 - Linalool, Geraniol, Nerol, ...
 - Sulphur fraction (<1%)

Hop Oil Fractions

Kollmannsberger et al, 2006

Hop Oils – Hydrocarbon fraction

Myrcene

- The largest of the hop oils
- Up to 40-60% of the hop oil, though most noble hops are low in myrcene (Saaz: 5-13%).
- 64°C boil point, hence volatilize when you boil it
- Herbal notes, described as green, balsamic, hoppy in small quantities
- Slight piney/resinous flavor

http://beersmith.com/blog/2013/01/21/late-hop-additions-and-hop-oils-in-beer-brewing/

Hop Oils – Hydrocarbon fraction

- Farnesene
 - Found in the coating of apples and other fruits
 - Provides the "green apple" flavor as well as flowery, citrusy, woody and at the extreme end musty, woody or vegetative.
 - Smallest of the hop oils (typically less than 1%)
 - Oxidizes rapidly, therefore it is best preserved as a late or post boil hop addition

http://beersmith.com/blog/2013/01/21/late-hop-additions-and-hop-oils-in-beer-brewing/

Hop Oils – Oxygenated fraction

Linalool

- Used as an indicator substance (indicator of hoppy beer)
- Floral, spicy, lavender-like, sweet and citrus-like aroma (orange)
- Closely related to myrcene (also used in perfume industries)
- Found naturally in numerous flower and spice plants

http://beersmith.com/blog/2013/01/21/late-hop-additions-and-hop-oils-in-beer-brewing/

Hop Oils – Oxygenated fraction

Geraniol

- Floral, rose-like, geranium flavor
- Also used in perfume industries

Simply Hops http://beersmithreem/blog/2013/01/21/late-hop-additions-and-hop-oils-in-beer-brewing/

Biotransformation

- Modification made to substance by an organism
 - Geraniol converted into citronellol
 - Linalool converted into terpineol
- Biotransformation of hop compounds in beer can occur in two forms:
 - When one compound is transformed into another
 - By the hydrolysis of a glycoside

http://draftmag.com/hop-compound-biotransformation/

Biotransformation

King and Dickinson, 2003

Biotransformation

• Examples:

- Carbonyls reduced to hydroxyls (Mielgard 1986)
- Ester hydrolysis and trans-esterification (Peacock 1981)
- Hop degradation products to fruity esters (Nielsen 2009)
- Glycosidically bound aroma precursors are hydrolyzed

(Kollmannsberger 2006)

Sharp, Daniel; Vollmer, Dan; Shellhammer, Thomas. Understanding How to Control Flavor and Aroma Consistency in Dry Hopped Beer. Presentation at the Craft Brewers Conference 2015 (Portland, OR)

Glycosides... What's that?

- Found in nature
- Sugar bound molecules
- Water-soluble
- Non-volatile
- Used for storage and transport in plants

Sharp, Daniel; Vollmer, Dan; Shellhammer, Thomas. Understanding How to Control Flavor and Aroma Consistency in Dry Hopped Beer. Presentation at the Craft Brewers Conference 2015 (Portland, OR)

Glycoside Hydrolysis

- Certain yeast strains have are capable of transforming non-aromatic glycosides into aromatic terpenoids
- Biotransformation is promoted when yeast is active (e.g. Dry-hopping during last fermentation)

Sharp, Daniel; Vollmer, Dan; Shellhammer, Thomas.

Understanding How to Control Flavor and Aroma Consistency in Dry Hopped Beer.

Presentation at the Craft Brewers Conference 2015 (Portland, OR)

Glycoside Hydrolysis

ENZYME (β-glycosidase)

LINALYL GLYCOSIDE (Non-aromatic)

CARBOHYDRATE (Glucose) HOP OIL (Linalool) AROMATIC

Yeast & Hop Interactions

Hop oils are lost during fermentation by:

- CO₂ stripping (highly volatile)
- Masking (other present compounds)
- Adsorption (yeast membrane)

Sharp, Daniel; Shellhammer, Thomas.

Recent Advances in Controlling Flavor and Aroma in Hoppy Beers.

Presentation at the Craft Brewers Conference 2016 (Philadelphia, PA)

Yeast & Hop Interactions

- Dry-hopping (late fermentation)
 - Right before reaching FG
 - Less CO₂ stripping
 - O₂ pickup from DH is minimized by active yeast
 - Biotransformation (yeast interaction)
 - Ethanol presence (higher solubility)
 - Still turbulent (mixing effect)

Sharp, Daniel; Shellhammer, Thomas. *Recent Advances in Controlling Flavor and Aroma in Hoppy Beers.* Presentation at the Craft Brewers Conference 2016 (Philadelphia, PA)

What does it taste like?

Enzymatic hydrolysis ß-Glucosidase, pH 5, 24 h, 40 °C	Addition of enzyme	Without enzyme
3(Z)-Hexenol	9	0
1-Octen-3-ol	484	0
1,5-Octadien-3-ol	39	0
Linalool	9	0
α-Terpineol	17	0
8-Hydroxy-linalool I	6	0
8-Hydroxy-linalool II	32	0
Benzylalcohol	82	15
3-Hydroxy-7,8-dihydro-β-ionol	10	0

Aroma	Mostly grapefruit and pine with some tropical pineapple, orange and caramel backin' it up	Mostly pine with some citrus, orange and grapefruit , followed by tropical pineapple aroma as well, slight caramel and isoamyl acetate
-------	--	--

Kollmannsberger et al, 2006

What does it taste like?

Possible combinations....

	CITRA™	Hersbrucker	EKG
CALLEMAND LaiBrew New England Alexicast coast Activest	X	Y	Ζ
CALLEMAND ABBAYE BELGIAN-STYLE ALE YEAST SECONMONICE CONVISION	Y	X	Y
CULLEMAND WINDSOR BRITISH STYLE BEER YEAST CHARGMYCE CENTRIA	Ζ	Y	X

Aromatic yeasts

Conclusions

- Hop aroma and flavour is complex
- Yeast interaction with hop derived constituents can be significant
- Yeast strain selection can impact on aroma and flavour of beer
- Hop addition and timing is critical
- Scope for creativity and experimentation...... Have fun!

References

http://beersmith.com/blog/2013/01/21/late-hop-additions-and-hop-oils-in-beer-brewing/ https://byo.com/stories/issue/item/3187-advanced-dry-hopping-techniques

https://beersensoryscience.wordpress.com/2010/11/30/glycosides/

http://draftmag.com/hop-compound-biotransformation/

A Study of Factors Affecting the Extraction of Flavor When Dry Hopping Beer. Wolf, P. (MSc Thesis) Sharp, Daniel; Vollmer, Dan; Shellhammer, Thomas. Understanding How to Control Flavor and Aroma Consistency in Dry Hopped Beer. Presentation at the Craft Brewers Conference 2015 (Portland, OR) Sharp, Daniel; Shellhammer, Thomas. Recent Advances in Controlling Flavor and Aroma in Hoppy Beers. Presentation at the Craft Brewers Conference 2016 (Philadelphia, PA)

King, Andrew; Dickinson, Richard. (2003). *Biotransformation of hop aroma terpenoids by ale and lager yeasts.* Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1567-1364.2003.tb00138.x/full

